Posted in Քիմիա 7

Ջրածնային և մետաղային կապեր

Տեսություն

Ջրածնային կապ

Ջրածնային կապն առաջանում է ջրածին պարունակող այնպիսի միացություններում, որոնցում ջրածինը միացած է խիստ էլեկտրաբացասական տարրի ատոմին:

Ջրածինը իր միակ էլեկտրոնը տալու կամ տեղաշարժելու ժամանակ վերածվում է գրեթե «մերկ» պրոտոնի, ձեռք է բերում դրական լիցքի մեծ խտություն և կարողանում է մեծ ուժով ձգվել այլ՝ բացասական լիցք կրող ատոմների կողմից:

Օրինակներ՝

440px-Acetic_Acid_Hydrogenbridge_V.1.svg.png
838421-d83249a387fa7f71440b62eaf1234b8b.jpg
H-bonding.gif

Մետաղային կապ

Այն փոխազդեցությունը, որն առաջանում է մետաղների ատոմների վալենտային էլեկտրոնների ընդհանրացված օրբիտալների և մետաղի իոնների միջև, կոչվում է մետաղային կապ:

Մետաղային տարրերի ատոմներն արտաքին էնեգիական մակարդակում ունեն քիչ թվով էլեկտրոններ և մեծ շառավիղ, ինչի պատճառով էլեկտրոնները թույլ են ձգվում միջուկների կողմից և ընդհանրացվում մետաղի բյուրեղում առկա բոլոր ատոմների միջև:

metallic_bond1.jpg
MM_CI_07.jpg

Մետաղների բոլոր հատկությունները պայմանավորված են դրանցում մետաղային կապի առկայությամբ. օրինակ՝ էլեկտրահաղորդականությունը.

4aeb3d4749a43094f01103d32e91b471.gif
Posted in Քիմիա 7

Իոնային կապ

Տեսություն

Քիմիական կապի առաջացման հիմնական շարժիչ ուժն ատոմի՝ 8  էլեկտրոն պարունակող արտաքին էներգիական մակարդակ ունենալու ձգտումն է:

Քննարկենք, թե ինչպես կարող է քիմիական կապ առաջանալ էլեկտրաբացասականությամբ միմյանցից կտրուկ տարբերվող ատոմների միջև, օրինակ` նատրիումի (Na) և ֆտորի(F):

Նատրիումի  ատոմն իր արտաքին շերտի մեկ էլեկտրոնը տրամադրում է ֆտորի ատոմին և փոխարկվում է ութ էլեկտրոն պարունակող, կայուն, դրական լիցքավորված մասնիկի, այսինքն` ստացվում է նեոն (Ne) իներտ գազի էլեկտրոնային կառուցվածք. 

Na0−e−→Na+

Ֆտորի ատոմն արտաքին էլեկտրոնային շերտում յոթ էլեկտրոն ունի, և կայուն վիճակի համար ֆտորի ատոմին ընդամենը մեկ էլեկտրոն է պակասում, ուստիև ավարտուն արտաքին էներգիական մակարդակ ստանալու համար շատ ավելի հեշտ է այդ ատոմին մեկ էլեկտրոն միացնել: Այդ մեկ էլեկտրոնը նատրիումի ատոմից վերցնելիս ֆտորի ատոմը փոխարկվում է 8 էլեկտրոն պարունակող, կայուն արտաքին շերտով, բացասական լիցքավորված մասնիկի այսինքն, ստացվում է նեոն (Ne) իներտ գազի էլեկտրոնային կառուցվածք.

F0+e−→F−

Դրական (Na+)  և բացասական F− մասնիկների միջև էլեկտրաստատիկական ձգողության ուժեր են ծագում, և որպես արդյունք՝ առաջանում է նատրիումի ֆտորիդ նյութը:

Իոնները  լիցքավորված մասնիկներ են, որոնք առաջանում են չեզոք ատոմներին էլեկտրոն միանալիս կամ էլեկտրոն տրամադրելիս:   

Իոնի ձեռք բերած էլեկտրական լիցքն անվանվում է իոնի լիցք:

Իոնի լիցքը նշելիս նրա թվային արժեքը գրվում է «+» կամ «−»  նշանով, ընդ որում՝ միալիցք իոնների դեպքում 1 թիվը չի գրվում:

Այն քիմիական կապը, որն առաջանում է իոնների միջև գործող էլեկտրաստատիկական փոխազդեցության շնորհիվ անվանվում է իոնային: 

Էլեկտրաստատիկական  ուժերի ծագման հետևանքով   ձևավորվում է  այսպես կոչված իոնային բյուրեղավանդակը:

Իոնային բյուրեղավանդակ առաջացրած միացություններն էլ անվանվում են իոնային միացություններ

Օրինակ

NaF,NaCl,MgBr2,CaCl2

Իոնային կապ են առաջացնում նաև բարդ իոնները՝ լիցքավորված բազմատոմ մասնիկները, օրինակ՝(NH4),+(SO4),2−(OH),−(NO3)− և այլն:

Դրանք նույնպես իոնային կապով են միանում տարանուն լիցքով ոններին՝ (NH4)+Br−+,(SO4)2−+Ca2+,K++(OH)− և այլն:

Այս դեպքում բյուրեղավանդակի հանգույցներում կանոնավոր դասավորվում են պարզ և բարդ իոնները:

Իոնային կապը հագեցած չէ:

Իոնային կապն ուղղորդված չէ:

Սրանք են իոնային կապի գլխավոր հատկությունները: Այս կապի ուղղորդված չլինելը բացատրվում է այն հանգամանքով, որ լիցքի գնդաձև էլեկտրաստատիկական դաշտն իոնի շուրջը բոլոր ուղղություններով համաչափ է, և տարանուն լիցքով իոնը կարող է տարբեր կողմերից ձգվել, ընդ որում՝ կարող են տարբեր թվերով իոններ ձգվել: Այլ կերպ ասած՝ իոնային կապն առաջանում է ոչ թե տեղայնացված երկու մասնիկի, այլ մեծաթիվ մասնիկների միջև ու տարածական տարբեր ուղղություններով:

images (13).jpg

Իսկ տարբեր ուղղություններով գործող փոխազդեցության ուժերի գոյությունն ապացույց է, որ իոնային կապը հագեցած չէ: Այսպես, նատրիումի քլորիդի (NaCl) բյուրեղներում նատրիումի յուրաքանչյուր իոն (Na+) շրջապատված է քլորի 6 իոնով, քլորի յուրաքանչյուր իոն (Cl)՝ նատրիումի 6 իոնով:

images (14).jpg

Իոնային միացությունների բյուրեղավանդակները կայուն են, ուստիև բնորոշվում են հալման ու եռման բարձր ջերմաստիճաններով:

Posted in Քիմիա 7

Կովալենտային կապ

Տեսություն

Փորձենք պատասխանել այն հարցին, թե ինչու և ինչպես է տեղի ունենում մոլեկուլի առաջացումը չեզոք ատոմներից: Ինչպե՞ս են առաջանում ոչ մետաղական պարզ նյութերի երկատոմ մոլեկուլները:

Դիտարկենք այդ հարցը ջրածին պարզ նյութի առաջացման օրինակով, որի մոլեկուլային բանաձևն է՝ H2:  Ջրածնի ատոմում առկա է մեկ չզույգված էլեկտրոն՝ H⋅

Երկու ատոմներ միմյանց մոտենալիս առաջացնում են ընդհանուր էլեկտրոնային զույգ:

ՕրինակՋրածնի ատոմները միանում են մեկ ընդհանուր էլեկտրոնային զույգով՝ ըստ հետևյալ ուրվագրի՝
H⋅+⋅H→H:H
Նոր առաջացած էլեկտրոնային զույգը, որն անվանվում է նաև ընդհանրացված, միաժամանակ և հավասարաչափ պատկանում է ջրածնի երկու ատոմին: Ընդհանուր էլեկտրոնային զույգը ձգվում է ջրածնի երկու ատոմների  դրական լիցքավորված միջուկների կողմից, «ցեմենտում» դրանք՝ ապահովելով մոլեկուլի կայունությունը:    

Քիմիական կապը, որն առաջանում է երկու ատոմի միջև ընդհանրացված էլեկտրոնային զույգի միջոցով կոչվում է կովալենտային:

Յուրաքանչյուր էլեկտրոնային զույգ մեկ քիմիական կապ է:

Ջրածնի մոլեկուլում առկա է մեկ ընդհանրացված էլեկտրոնային զույգ և հետևաբար՝ մեկ քիմիական կապ:

Ընդունված է էլեկտրոնային զույգը փոխարինել գծիկով և կստացվի ջրածնի մոլեկուլի գրաֆիկական բանաձևը (գծապատկեր-բանաձև)՝  H–H: Թթվածնի ատոմների միջև առաջանում է երկու ընդհանուր զույգ՝ երկու քիմիական կապ՝ O=O:  Այդպիսի կապը կոչվում է կրկնակի կապ:

Ազոտի մոլեկուլում ընդհանուր էլեկտրոնային զույգերը երեքն են՝ 

images (3).png

Ազոտի մոլեկուլում առկա է կովալենտային ոչ բևեռային եռակի կապ` N≡N 

Այն կապը, որն առաջանում է հավասարաչափ բաշխված ընդհանրացված էլեկտրոնային զույգերով, որոնց կապված են երկու միջուկները (կենտրոնների) կոչվում է կովալենտային ոչ բևեռային:

Հաստատված է, որ ցանկացած քիմիական կապ առաջանում է ատոմների արտաքին էլեկտրոնային շերտի էլեկտրոնների մասնակցությամբ, և կապի բնույթը որոշվում է էլեկտրոնների շարժման օրինաչափություններով:

Որակական առումով մոլեկուլն ատոմների փոխազդեցության արդյունք է և ոչ ատոմների պարզ մեխանիկական հավաքածու:Մոլեկուլ առաջանալիս տեղի է ունենում էլեկտրոնային ամպերի վրածածկ:

67.jpg

Եթե էլեկտրոնային ամպերի վրածածկը տեղի է ունենում երկու ատոմների միջուկների միացման գծի ուղղությամբ (կապի առանցքով), ապա  այդ կապն անվանում են սիգմա (σ) կապ: σ− կապը՝ միակի պարզ կապ է:

images (1).jpg

Եթե կապվող ատոմների միջև մեկից ավելի էլեկտրոնային զույգ է առաջացել, ապա կապն անվանվում է բազմակի՝ կրկնակի (երկու ընդհանուր զույգ) կամ եռակի (երեք ընդհանուր զույգ):

Բազմակի  կապերից մեկն անպայման σ -կապ է, իսկ մյուսները՝ π -կապեր,
π -կապն առաջանում է ρ -էլեկտրոնային ամպերի կրկնակի, կողմնային վրածածկից՝ σ -կապի առանցքին ուղղահայաց:

nimages (2).jpg
0002nnnimages.jpg

Posted in Քիմիա 7

Քիմիական կապի բնույթը

Տեսություն

Քիմիական միացությունների մոլեկուլները որոշակի հաջորդականությամբ միմյանց կապված ատոմների համախումբ են:

Նյութերի քիմիական հատկությունները պայմանավորված են քիմիական կապերի տեսակով, կապ առաջացնող ատոմների բնույթով և մոլեկուլում դրանց փոխազդեցությամբ:

Հին ժամանակներից սկսած՝ գիտնականները փորձում են պարզել, թե ինչպես են կառուցված նյութերը, ինչպե՞ս և ինչու՞ են ատոմները միանում, և ի՞նչ ուժեր են նրանց իրար մոտ պահում:

XX դարում ֆիզիկոսները պարզեցին, որ ատոմները կապվում են էլեկտրական լիցք ունեցող մասնիկներով` արտաքին էներգիական մակարդակի էլեկտրոններով, որոնք ձգվում են կապվող ատոմների դրական միջուկների կողմից: Հետևաբար, ատոմները կապող ուժերը էլեկտրական բնույթի են:

Ատոմների կապը մեկը մյուսի հետ անվանում են քիմիական կապ:

Քիմիական   կապը փոխազդեցություն է էլեկտրոնների և միջուկների միջև,
որը հանգեցնում է մոլեկուլում ատոմների միացմանը:

Քիմիական կապն ատոմների փոխազդեցություն է, որն ուղեկցվում է էներգիայի անջատումով:

Այդ էներգիան կազմում է  40-ից մինչև 1000կՋ/մոլ: Էներգիայի այդպիսի լայն միջակայք հնարավոր է տարբեր փոխազդեցությունների պատճառով, որոնք ներկայումս հիմնականում դասակարգվում են որպես կովալենտային,իոնային և մետաղային կապեր:

Կովալենտային կապ առաջանում է ոչ մետաղների ատոմների միջև:

Իոնային կապ առաջանում է մետաղների և ոչ մետաղների ատոմների միջև:

Մետաղական կապ առաջանում է մետաղական պարզ նյութերում և համաձուլվածքներում:

Posted in Քիմիա 7

Ատոմի էլեկտրոնային թաղանթի կառուցվածքը

Տեսություն

Ատոմի միջուկի շուրջը գտնվող էլեկտրոնների համախումբը առաջացնում է էլեկտրոնային թաղանթը:

Էլեկտրոնների թիվը ատոմի էլեկտրոնային թաղանթում հավասար է ատոմի միջուկում պրոտոնների թվին, որը որոշվում է Մենդելեևի պարբերական համակարգում տարրի կարգաթվով կամ ատոմային համարով:

Այսպես, ջրածնի ատոմի էլեկտրոնային թաղանթը կազմված է մեկ էլեկտրոնից, կալցիումինը՝ 20, արծաթինը՝ 47:

Իսկ ինչպե՞ս են շարժվում էլեկտրոնները: Քաոսայի՞ն, վառվող լամպի շուրջը պտտվող մժեղների նմա՞ն, թե՞ որոշակի կարգավորվածությամբ: Այդ հարցի պատասխանը կարելի է գտնել՝ դիտարկելով էլեկտրոնի էներգիական բնութագիրը: 

Էլեկտրոններն ատոմում տարբերվում են իրենց էներգիայով: Ինչպես ցույց են տալիս փորձնական արդյունքները,  որոշ էլեկտրոններ ավելի ուժեղ են ձգվում միջուկի կողմից, մյուսները՝ ավելի թույլ: Այս երևույթի գլխավոր պատճառը էլեկտրոնների տարբեր հեռավորությունն է ատոմի միջուկից:

Ինչքան էլեկտրոնները մոտ են ատոմի միջուկին, այնքան ավելի ամուր են կապված և նրանց դժվար է պոկել էլեկտրոնային թաղանթներից, իսկ ինչքան էլեկտրոնները հեռու են միջուկից, այնքան նրանց հեշտ է պոկել:

Միջուկին առավել մոտ պտտվող էլեկտրոնները կարծես թե շրջափակում են  միջուկը մյուս էլեկտրոններից, որոնք միջուկի կողմից ավելի թույլ են ձգվում, և հետզհետե հեռավորությունը միջուկից մեծանում է: Այսպես են առաջանում էլեկտրոնային շերտերնատոմի էլեկտրոնային թաղանթում:

Ատոմի էլեկտրոնային թաղանթում էլեկտրոնները բաշխված են էլեկտրոնային շերտերի ձևով:

Առաջինը միջուկին մոտ գտնվող էլեկտրոնային շերտն է, որում էլեկտրոնն օժտված է նվազագույն էներգիայով: Վերջին՝ միջուկից ամենահեռու գտնվող էլեկտրոնային շերտն անվանվում է արտաքին:

Այսինքն էլեկտրոններն ըստ էներգիական մակարդակների բաշխվում են նվազագույն էներգիայի սկզբունքով:

Ատոմի այդ վիճակն անվանում են հիմնական վիճակ:

Յուրաքանչյուր էլեկտրոնային շերտում գտնվում են էներգիայի արժեքով միմյանց մոտ էլեկտրոններ: Այդ պատճառով էլ էլեկտրոնային շերտն անվանվում է նաև էներգիական մակարդակ:

Էներգիական մակարդակների թիվը քիմիական տարրի ատոմում հավասար է պարբերական աղյուսակում այդ տարրի պարբերության համարին:

images.png

Օրինակ

 Նատրիումը գտնվում է 3-րդ պարբերությունում հետևաբար ատոմում առկա 11 էլեկտրոնները բաշխված են երեք էներգիական մակարդակներում:

Տվյալ էներգիական մակարդակում գտնվող էլեկտրորրերի առավելագույն թիվը որոշվում է 2n2 բանաձևով, որտեղ n-ը մակարդակի համարն է:

Առաջին էլեկտրոնային շերտում երկուսից ավելի էլեկտրոն չի կարող լինել:

Ցանկացած ատոմի արտաքին էլեկտրոնային շերտում (բացառությամբ որոշ տարրերի ատոմների) էլեկտրոնների թիվը չի կարող 8-ից մեծ լինել:Էլեկտրոնների թիվը գլխավոր ենթախմբերի տարրերի արտաքին էներգիական մակարդակում հավասար է խմբի համարին:Գրառումը, որն արտացոլում է քիմիական տարրի ատոմում էլեկտրոնների բաշխումն ըստ էներգիական մակարդակների և ենթամակարդակների, կոչվում է այդ ատոմի էլեկտրոնային փոխդասավորվածություն (էլեկտրոնային բանաձև):ՕրինակՆատրիում տարրի ատոմի էլեկտրոնային բանաձևն է ` 1s22s22p63s1

Posted in Քիմիա 7

Ատոմի միջուկի կառուցվածքը: Իզոտոպներ

Տեսություն

Նյութերը, որոնցից կազմված են ֆիզիկական մարմինները, իրենց հերթին կազմված են մասնիկներից` մոլեկուլներից:

Մոլեկուլները բաժանելի մասնիկներ են, դրանք կազմված են ավելի փոքր մասնիկներից` ատոմներից:

Ատոմ հունարեն նշանակում է անբաժանելի. քիմիական ճանապարհով այն չի բաժանվում, սակայն ֆիզիկական ճանապարհով այն բաժանվում է առավել փոքր, այսպես կոչված տարրական մասնիկների: 

Ատոմն ունի բարդ կառուցվածք, այն կազմված է դրական լիցքավորված միջուկից և նրա շուրջը գտնվող բացասական լիցք ունեցող էլեկտրոններից:

download (2).jpg

Միջուկն իր հերթին կազմված է դրական լիցք ունեցող մասնիկներից` պրոտոններից  և  զանգվածով պրոտոնին մոտավորապես հավասար, բայց  լիցք չունեցող մասնիկներից` նեյտրոններից: 

images (12).jpg

Քիմիական ռեակցիաների ընթացքում ատոմի միջուկի բաղադրության փոփոխություն տեղի չի ունենում:

Միջուկի շուրջը առկա էլեկտրոնների թիվը հավասար է միջուկում առկա  պրոտոնների թվին, հետևաբար, ատոմն էլեկտրաչեզոք է: Պրոտոնների թիվը հավասար է միջուկի դրական լիցքին կամ քիմիական տարրերի պարբերական համակարգում այդ տարրի ատոմային համարին (կարգաթվին): 

Նեյտրոնները, տեղավորվելով դրական լիցքավորված պրոտոնների միջև, խոչընդոտում են նրանց փոխադարձ վանումը: Նեյտրոնների թիվը ատոմի միջուկում  պրոտոնների թվից կամ մեծ է, կամ էլ հավասար:

Ատոմի զանգվածը հիմնականում պայմանավորված է միջուկի զանգվածով:

Միջուկի նույն դրական լիցքով ատոմների համախումբը անվանում են քիմիական տարր: Դրանք հաճախ հանդիպում են տարատեսակ ատոմների ձևով, որոնք տարբերվում են միջուկում պարունակվող նեյտրոնների թվով: 

Ատոմի միջուկում առկա պրոտոնների (Z) և նեյտրոնների (N) գումարի թիվն անվանում են ատոմի զանգվածային թիվը (A)՝

 A=Z+N

Միևնույն քիմիական տարրի ատոմները, որոնք տարբերվում են նեյտրոնների թվով, հետևաբար և զանգվածային թվով, անվանում են իզոտոպներ:

Օրինակ՝  A(Li)=3+4=7

images 222(14).jpg

 Տարրի իզոտոպները նշվում են միևնույն քիմիական նշանով, բացառությամբ ջրածնի:

Օրինակ՝ Օ,816Օ,817Օ,818

Ջրածնի իզոտոպներն են՝ պրոտիումըH11, դեյտերիումը,  D12, տրիտիումը T13:

download111 (3).jpg
Posted in Հաշվետվություններ, Քիմիա 7

Քիմիա. Ապրիլ ամսվա ամփոփում

1) Ո՞րն է նյութի քանակի միավորը:
Ա) լիտր
Բ) կգ
Գ) մոլ:

2) Տարրը գտնվում է երրորդ պարբերության 5-րդ խմբի գլխավոր ենթախմբում։ Ո՞րն է այդ տարրը.
Ա) ազոտ
Բ) ֆոսֆոր
Գ) այլումին
Դ) Արսեն:

3) Ո՞րն է ածխաթթու գազի բանաձևը:
CO2

Continue reading “Քիմիա. Ապրիլ ամսվա ամփոփում”
Posted in Ճամփորդություններ, Նախագծեր, Քիմիա 7

Մեկօրյա ճամփորդություն դեպի Բնության թանգարան

hqdefaultՆախագծի համակարգողը՝ Վարսենիկ Գրիգորյան

Նախագծի հեղինակ՝ Հայկ Աղլամազյան

Մասնակիցներ՝ Միջին դպրոցի 7-8-րդ դասարաններ, այլ ցանկացողներ

Օրը և ժամը՝ անհայտ է

Գումարը՝ անհայտ է

Նպատակը՝

  • դպրոցական աշակերտների համար հետաքրքիր է
  • տեսնել կարմիր գիրքը և կարմիր գրքի կենդանիներին, բայց չորացրած ձևով
  • ուրախ ժամանց անցկացնել ընկեր Վարսենիկի հետ։

Ընթացքը՝

  • առավոտյան շարժվում ենք դպրոցից
  • հասնելով տեղ մտնում ենք թանգարան
  • թանգարանից հետո ընդմիջում՝ ուտում ենք, խաղում ենք, զրուցում ենք
  • և վերադարձ դպրոց։

Նախապատրաստական աշխատանք

  • Google Map ծրագրի միջոցով գտնել և տեղադրել բլոգու՝ “Մխիթար Սեբաստացի” կրթահամալիրից մինչև “Բնության թանգարան” մեքենայի ճանապարհը և ճանապարհի տևողությունը
  • Գտնել հետաքրքիր տեղեկություններ Բնության թանգարանի հետ կապված
  • Առաջարկել առաջրկներ ճամփորդության համար։

Ցանկացողները պարտադիր գրեն՝ aghlamazyan.hayk.nd@mskh.am և Varsenik.Grigoryan@mskh.am էլ․ հացեներին․

Արդյունքը՝ Տեսանյութերի, լուսանկարների, պատումների տեսքով։

Posted in Քիմիա 7

Na – նատրիում

55454Նատրիումի միացությունները՝ կերակրի աղը և սոդան, հայտնի են շատ հին ժամանակներից։ Եբրայերեն neter  բառը հանդիպել է Աստվածաշնչում որպես նյութի անվանում, որը, ըստ Սողոմոնի եռացել է քացախում։ Եգիպտոսում սոդան բնության մեջ հանդիպում է սոդայի լճերի ջրերում։ Բնական սոդան հին եգիպտացիները օգտագործել են զմռսելու, կտավների սպիտակեցման համար, խոհանոցում սննդի մեջ, ինչպես նաև ներկերի պատրաստման համար։

«Նատրիում» անվանումը ծագել է լատ.՝ natrium բառից, որը փոխ են առել Մերձավոր եգիպտական լեզվից (nṯr), որտեղ նա ունեցել է այլ նշանակություններ. «սոդա», «ուտիչ նատր»։

«Na» հապավումը և natrium բառը առաջին անգամ օգտագործել են ակադեմիկոսները, հիմնադիրը՝ շվեդ բժիշկ Հակոբոս Բերցելիուս (Jöns Jakob Berzelius, 1779-1848)։ Հետագայում տարրը անվանեցին նաև սոդա: Sodium անվանումը հավանաբար գալիս է արաբական suda բառից, որը նշանակում է «գլխացավ», քանի որ այդ ժամանակ սոդան օգտագործում էին որպես դեղ գլխացավի համար։

Մետաղական նատրիումը առաջինն անջատել է Հ․ Դևին (1807, նոյեմբերի 19), ով առաջին անգամ այդ մասին տեղեկացրել է Բեկերսկի դասախոսություններում (իր դասախոսություններում նա նշել է, որ 1807 թվականի հոկտեմբերի 6-ին հայտնաբերել է կալիումը, իսկ նատրիումը կալիումից մի քանի օր անց)։ Նա նատրիումը ստացել է խոնավ նատրիումի հիդրօքսիդը էլեկտրոլիզի ենթարկելով։

Posted in Քիմիա 7

At – արծաթ

Արծաթը հայտնի է շատ վաղուց։ Եգիպտոսում պեղվել են ավելի քան 6000 տարվա հնություն ունեցող արծաթե զարդեր։ Ավելի ուշ արծաթը օգտագործվում էր դրամային համաձուլվածքներում։ Մ.թ.ա. 2500 թվականին շատ երկրներում արծաթն օգտագործվել է որպես մետաղադրամ։ Արծաթից պատրաստված գեղարվեստական առարկաներ են գտնվել նաև Էրեբունիում, Երզնկայում (մ. թ. ա. 5-4-րդ դարերում), Արտաշատում (մ. թ. ա. 2-1-ին դարերում)։

Ակնհայտ է, որ ռուս.՝ серебро, լեհ.՝ srebro, բուլղար․՝ сребро, հին սլավոներեն՝ сьребро մտնում է *sьrebro պրոտո-սլավոնական լեզվի մեջ, որը համապատասխանում է մերձբալթյան (լիտ.՝ sidabras – sirablan) և գերմաներեն (գոթ.՝ silubr, գերմ.՝ Silber, անգլ.՝ silver) լեզուներին։ Արծաթի «ἄργυρος», «árgyros» – «արգիրոս» (սպիտակ, փայլող, փայլատակող) հունական անվանումը կապված է նրա գեղեցիկ սպիտակափայլ գույնի հետ։ Այստեղից էլ ծագել է արծաթի լատ.՝ argentum – արգենտում նույնանշանակ անվանումը։

Հայերենի «արծաթ» բառի հնագույն ձևն է «արծանթ», որը սերում է վաղնջահնդեվրոպական «*h₂r̥ǵn̥tóm» արմատից։ Ասորեստանում արծաթը համարվում էր «Լուսնի մետաղ», իսկ ալքիմիկոսներն այն պատկերում էին լուսնեղջյուրի պատկերով։ Արծաթե, ոսկե և պլատինե իրերի ու զարդերի վրա դրվում է հարգանիշ, որը ցույց է տալիս թանկարժեք մետաղի պարունակությունը։

Posted in Քիմիա 7

Au – Ոսկի

640px-Au_crystals1Ոսկին մարդկությանը ամենից վաղ հայտնի մետաղն է։ Հայաստանում և Անատոլիայում այն հայտնի էր մ․ թ․ ա․ 6-րդ հազարամյակում։ Եգիպտոսում, Միջագետքում, Հնդկաստանում և Չինաստանում ոսկյա իրերի պատրաստման արվեստը հայտնի էր մ․ թ․ ա․ 3-2-րդ հազարամյակներում։ Ոսկին հիշատակվում է Աստվածաշնչում, «Իլիական»-ում, «Ոդիսական»-ում։ Ալքիմիկոսները այն անվանում էին «մետաղների արքա», որի ստացումը հասարակ մետաղներից համարում էին իրենց հիմնական նպատակը։

Միացություններում եռարժեք է կամ միարժեք, կոմպլեքսային միացություններում՝ հազվադեպ երկարժեք։ Մետաղների լարվածության շարքում ոսկին գտնվում է ջրածնից, պղնձից և արծաթից աջ։ Անմիջականորեն միանում է միայն հալոգենների և որոշ մետաղների հետ։

Թթվածնական միացությունները ստանում են անուղղակի ճանապարհով։ АuО-ի գոյությունը կասկածելի է։ Ոսկու (III) օքսիդը (Au2O3) ստացվում է հիդրօքսիդից և անկայուն է՝ 220°C-ից բարձր տաքացնելիս քայքայվում է, ջրում չի լուծվում։

Au(OH)3 ջրում վատ լուծվող, դեղնաշագանակագույն ամֆոտեր հիդրօքսիդ է։ Գերակշռող թթվային հատկությունների պատճառով կոչվում է ոսկեթթու, ալկալիների հետ առաջացնում է աուրատներ։ Ոսկին ջրածնի հոսանքում տաքացնելիս (~1400 °C) աննշան քանակներով առաջանում է հեշտ ցնդող և անկայուն հիդրիդը՝ AuH։

Անկայուն են նաև ոսկու (I) հալոգենիդները՝ AuCl, AuBr և այլն։ Ոսկու փոշին քլորի մթնոլորտում (200 °C) առաջացնում է AuCl3, որը հեշտ ցնդող, կարմիր բյուրեղական նյութ է։ Լուծվում է ջրում առաջացնելով կարմրաշագանակագույն կոմպլեքսային թթու՝ H2[AuOCl3]։ Աղաթթու ավելացնելիս ստացվում է ոսկիքլորաջրածնական թթու (բաց դեղին), որը բյուրեղանում է H[AuC14]•2H2O բաղադրությամբ։